Activity correlation imaging: visualizing function and structure of neuronal populations.

نویسندگان

  • Stephan Junek
  • Tsai-Wen Chen
  • Mihai Alevra
  • Detlev Schild
چکیده

For the analysis of neuronal networks it is an important yet unresolved task to relate the neurons' activities to their morphology. Here we introduce activity correlation imaging to simultaneously visualize the activity and morphology of populations of neurons. To this end we first stain the network's neurons using a membrane-permeable [Ca(2+)] indicator (e.g., Fluo-4/AM) and record their activities. We then exploit the recorded temporal activity patterns as a means of intrinsic contrast to visualize individual neurons' dendritic morphology. The result is a high-contrast, multicolor visualization of the neuronal network. Taking the Xenopus olfactory bulb as an example we show the activities of the mitral/tufted cells of the olfactory bulb as well as their projections into the olfactory glomeruli. This method, yielding both functional and structural information of neuronal populations, will open up unprecedented possibilities for the investigation of neuronal networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How well do we understand the neural origins of the fMRI BOLD signal?

The successful use of functional magnetic resonance imaging (fMRI) as a way of visualizing cortical function depends largely on the important relationships between the signal observed and the underlying neuronal activity that it is believed to represent. Currently, a relatively direct correlation seems to be favoured between fMRI signals and population synaptic activity (including inhibitory an...

متن کامل

Tracking recurrence of correlation structure in neuronal recordings

BACKGROUND Correlated neuronal activity in the brain is hypothesized to contribute to information representation, and is important for gauging brain dynamics in health and disease. Due to high dimensional neural datasets, it is difficult to study temporal variations in correlation structure. NEW METHOD We developed a multiscale method, Population Coordination (PCo), to assess neural populatio...

متن کامل

Visualizing the spinal neuronal dynamics of locomotion

Modern imaging and simulation techniques have enhanced system-level understanding of neural function. In this article, we present an application of interactive visualization to understanding neuronal dynamics causing locomotion of a single hip joint, based on pattern generator output of the spinal cord. Our earlier work visualized cell-level responses of multiple neuronal populations. However, ...

متن کامل

In Vivo Simultaneous Tracing and Ca2+ Imaging of Local Neuronal Circuits

A central question about the brain is how information is processed by large populations of neurons embedded in intricate local networks. Answering this question requires not only monitoring functional dynamics of many neurons simultaneously, but also interpreting such activity patterns in the context of neuronal circuitry. Here, we introduce a versatile approach for loading Ca(2+) indicators in...

متن کامل

Electrophoresis of polar fluorescent tracers through the nerve sheath labels neuronal populations for anatomical and functional imaging

The delivery of tracers into populations of neurons is essential to visualize their anatomy and analyze their function. In some model systems genetically-targeted expression of fluorescent proteins is the method of choice; however, these genetic tools are not available for most organisms and alternative labeling methods are very limited. Here we describe a new method for neuronal labelling by e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 9  شماره 

صفحات  -

تاریخ انتشار 2009